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Introduction

Einstein believed that one of the main problems in unified field theory is the one of
the geometrization of the energy-momentum tensor of matter on the right-hand side of
his equations. This problem can be solved using the geometry of absolute parallelism and
Cartan’s structural equations in this geometry [1]:

∇[ke
a
m] − eb

[kT
a
|b|m] = 0, (A)

Ra
bkm + 2∇[kT

a
|b|m] + 2T a

c[kT
c
|b|m] = 0, (B)

i, j, k... = 0, 1, 2, 3, a, b, c... = 0, 1, 2, 3.

These equations are essentially a matrix form, where the matrices ea
m, T a

bm and Ra
bkm

appear as the main gauge potential and fields in the theory of physical vacuum.

1 Vacuum equations as an extended set of the
Einstein-Yang-Mills equations. Geometrization of
matter fields

The geometry of absolute parallelism is a space of events in the theory of physical
vacuum. Speaking here of events, we mean the interaction of whole and part in a certain
physical situation.

Consider an event that represents some excitation of physical vacuum and show that
this excitation is described by Einstein-like equations with geometrized energy-momentum
tensor.

Contracting the equations (B) written as

Ri
jkm + 2∇[kT

i
|j|m] + 2T i

s[kT
s
|j|m] = 0 (1)

in indices i and k, we will have

Rjm = −2∇[iT
i
|j|m] − 2T i

s[iT
s
|j|m]. (2)

Contracting further the equations (2) by the metric tensor gjm, we get

R = −2gjm(∇[iT
i
|j|m] + T i

s[iT
s
|j|m]). (3)
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Forming, using (2) and (3), the Einstein tensor

Gjm = Rjm −
1

2
gjmR,

we will get the equations

Rjm −
1

2
gjmR = νTjm, (4)

similar to Einstein’s equations, but with the geometrized right-hand side, defined as

Tjm = −2

ν
{(∇[iT

i
|j|m] + T i

s[iT
s
|j|m])−

−1

2
gjmgpn(∇[iT

i
|p|n] + T i

s[iT
s
|p|n])} (5)

Using the notation
Pjm = (∇[iT

i
|j|m] + T i

s[iT
s
|j|m])

we will have from (5)

Tjm = −2

ν
(Pjm −

1

2
gjmgpnPpn). (6)

Tensor (6) can be represented as the sum of parts symmetrical and skew-symmetrical
in the indices j and m, and

Rjm −
1

2
gjmR = νT(jm), (7)

T[jm] =
1

ν
(−∇iΩ

. . i
jm −∇mAj − AsΩ

. . s
jm ) = 0, (8)

Aj = T i
ji.

Relationship (8) can be taken to be the equations obeyed by the torsion Ω . . i
jm of absolute

parallelism geometry 1, which form the energy-momentum tensor (5).

1In the article ” Riemann-Geometrie mit Aufrechterhaltung des Bergiffes des Fernaparralelismus” Sitzungs-
ber. preuss. Akad.Wiss., phys.-math. Kl., 1928, 217-221 A.Einstein used the torsion of absolute parallelism in
the formula (10) determining torsion as

Λα
βγ =

1
2
(∆α

βγ −∆α
γβ),

where

∆α
βγ = eα

aea
β , γ, , γ =

∂

∂xγ
, α, β, ... = 0, 1, 2, 3, a, b... = 0, 1, 2, 3

–connection of absolute parallelism,
Λα

βγ = −Ω . . i
jm

– anholonomity object in J. Schouten definition. In the same article A. Einstein has specified, that when torsion
Λα

βγ ( anholonomity object ) is equal to zero the space becomes Minkovski space. Object of anholonomity in
the theory appears when we use the manifold of oriented points and anholonomic tetrad. Tetrad formulation
of Einstein equations connects curvature Ri

jkm with Ricci rotation coefficients T i
jk us

Ri
jkm = −2∇[kT i

|j|m] − 2T i
c[kT c

|j|m],

where
T i

jk = −Ω..i
jk + gim(gjsΩ..s

mk + gksΩ..s
mj)
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We now decompose the Riemann tensor Rijkm into the irreducible parts

Rijkm = Cijkm + gi[kRm]j + gj[kRm]i +
1

3
Rgi[mgk]j. (9)

Using equations (4), written as

Rjm = ν(Tjm −
1

2
gjmT ), (10)

we rewrite (9) as

Rijkm = Cijkm + 2νg[k(iTj)m] −
1

3
νTgi[mgk]j, (11)

where T is the trace of (6).
Let us now introduce the tensor current

Jijkm = 2g[k(iTj)m] −
1

3
Tgi[mgk]j (12)

and represent the tensor (11) as the sum

Rijkm = Cijkm + νJijkm. (13)

Substituting this relationship into (1), we will obtain

Cijkm + 2∇[kT|ij|m] + 2Tis[kT
s
|j|m] = −νJijkm. (14)

Equations (14) represent the Yang-Mills equations with a geometrized source given by
(3.12). In (3.14) the role of Yang-Mills field is played by the Weyl tensor Cijkm, and that of
potentials by the Ricci rotation coefficients T i

jk.
Let us now substitute (13) into the second Bianchi identities in the geometry of absolute

parallelism [20]
∇[nR |ij|km] + Rs

j[kmT |is|n] − T s
j[nR |is|km] = 0. (15)

As a result we have the equations of motion

∇[nC |ij|km] + Cs
j[kmT |is|n] − T s

j[nC |is|km] = −νJnijkm (16)

for the Yang-Mills field Cijkm. The source Jnijkm in these equations will then by defined
through the current (3.12) as follows:

Jnijkm = ∇[nJ |ij|km] + Js
j[kmT |is|n] − T s

j[nJ |is|km]. (17)

Using the geometrized Einstein equations (4) and the Yang-Mills equations (14), we can
represent the equations of physical vacuum (A) and (B) in the form of the extended set of
the Einstein-Yang-Mills equations

(A) ∇[ke
a
j] + T i

[kj]e
a
i = 0,

–Ricci rotation coefficients (torsion field). If in tetrad formulation to put object of anholonomity equal to zero
Riemann curvature addresses in zero. From my point of view anholonomity has new physical sense - we enter
as elements of space-time new rotational degrees of freedom - anholonomic rotational coordinates.
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(B.1) Rjm −
1

2
gjmR = νTjm ,

(B.2) Ci
jkm + 2∇[kT

i
|j|m] + 2T i

s[kT
s
|j|m] = −νJ i

jkm,

where the geometrized sources Tjm and Jijkm are given by (5) and (12).
For the case of Einstein’s vacuum the equations (A) and (B) are significantly simplified

and become

(I) ∇[ke
a
j] + T i

[kj]e
a
i = 0,

(II) Rjm = 0,

(III) Ci
jkm + 2∇[kT

i
|j|m] + 2T i

s[kT
s
|j|m] = 0.

2 Inertial field as a torsion field

The equations of motion for an oriented point in the theory of physical vacuum coincide
with the equations of the geodesics of the space of absolute parallelism

d2xi

ds2
+ Γi

jk

dxj

ds

dxk

ds
+ T i

jk

dxj

ds

dxk

ds
= 0, (18)

which differ from the equations of motion in Einstein’s theory of gravitation by the additional
term

T i
jk

dxj

ds

dxk

ds
.

The very name of the quantities

T i
jk = ei

a∇ke
a
j (19)

–the Ricci rotation coefficients suggests that they describe rotation. It follows from (19)
that the quantities T i

jk describe the change in the orientation of the tetrad vectors ea
j when

the tetrad shifts by an infinitesimal distance dxi (the covariant derivative ∇k is taken with
respect to the connection Γi

jk, therefore in ”normal” coordinates ∇k = ∂k). Using the Ricci
rotation coefficients we can form the four-dimensional angular velocity of rotation of the
tetrad vector

Ωi
j = T i

jk

dxk

ds
(20)

with the symmetry properties
Ωij = −Ωji. (21)

Suppose now that the tetrad vectors coincide with the vectors of a four-dimensional
arbitrarily accelerated reference frame, then, by (20), the rotation of the reference frame is
fully determined by the torsion field T i

jk. Since the field T i
jk transforms following a tensor
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law relative to the coordinates transformations xi, the rotation of reference frames relative
to the coordinate transformations is absolute. The nontensor transformation law of T i

jk is
valid for transformations in the angular coordinates ϕ1, ϕ2, ϕ3, θ1,
θ2, θ3, therefore rotation is only relative for the group of rotations O(3.1) [1].

Let us now write the nonrelativisitc equations of motion of a mass m under inertia
forces alone, assuming that at a given moment of time it passes through the origin of an
accelerated system

d

dt
(mv) = m(−W + 2[vωωω]). (22)

These equations can be written in the form

d

dt
(mvα) = m(−Wαo + 2ωαβ

dxβ

dt
), α, β = 1, 2, 3, (23)

where W = (W1, W2, W3) = (W10, W20, W30), ωωω = (ω1, ω2, ω3),

ωαβ = −ωβα = −

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (24)

On the other hand, equations (18), if we take into account (20), can be represented as

d2xi

ds2
+ Ωi

j

dxj

ds
= 0. (25)

Multiplying these equations by mass m, we will write the nonrelativistic three-
dimensional part of these equations in the form

m
duα

ds0

= −mΩα0
dx0

ds0

− 2mΩαβ
dxβ

ds0

. (26)

Since in a nonrelativistic approximation

ds0 = cdt, uα =
vα

c

and dx0 = cdt, then the equations (26) become

m
dvα

dt
= −mc2Ωα0 − 2mc2Ωαβ

1

c

dxβ

dt
. (27)

Comparing (27) with (23) gives

Ω10 =
W1

c2
, Ω20 =

W2

c2
,

Ω30 =
W3

c2
, Ω12 = −ω3

c
,

Ω13 =
ω2

c
, Ω23 = −ω1

c
.
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Consequently, the matrix of the four-dimensional angular velocity of rotation of an arbi-
trarily accelerated reference frame (matrix of the four-dimensional ”classical spin”) has the
form

Ωij =
1

c2


O −W1 −W2 −W3

W1 0 −cω3 cω2

W2 cω3 0 −cω1

W3 −cω2 cω1 0

 . (28)

It is seen from the matrix that the four-dimensional rotation of a reference frame caused
by the inertial fields T i

jk is associated with the rotation

Ω . . i
jk = −T i

[jk] (29)

of a space of events in universal relativity theory. Fields determined by the rotation of
space came to be known as torsion fields. Accordingly, the torsion field T i

jk represents the
inertial field engendered by the torsion of a space of absolute parallelism.

3 Inertial field in an inertial frame

Most of modern physical theories have been formulated for inertial reference frames. A
reference frame is inertial if it moves linearly and uniformly (without rotation) relative to
another one, similar to it. In actual fact, we have here two inertial frames defined through
each other.

There is another definition of the inertial reference frame – based on the concepts of
inertial fields and inertia forces. We then have the following definition: a reference frame is
inertial if there is no inertia forces in it.

Since inertia forces are engendered by an inertial field, it seems that inertial fields in
inertial reference frame must vanish as well. But for the universal theory of relativity this
is not the case – inertial fields (or torsion fields) are nonzero even in inertial reference
frames. Indeed, in inertial reference frame the inertia force in (18) becomes zero

F i
I = mT i

jk

dxj

ds

dxk

ds
= 0. (30)

In this equation the inertial field T i
jk is defined through torsion Ω . . i

jk = −Ω . . i
kj of a space

of absolute parallelism

Ω . . i
jk = ei

ae
a
[k,j] =

1

2
ei

a(e
a
k,j − ea

j,k) (31)

in the following manner [1]:

T i
jk = −Ω . . i

jk + gim(gjsΩ
. . i
mk + gksΩ

. . i
mj ). (32)

Substituting this relationship into (30) gives (for m 6= 0)

−Ω . . i
jk

dxj

ds

dxk

ds
+ gim(ggsΩ

. . s
mk + gksΩ

. . s
mj )

dxj

ds

dxk

ds
= 0. (33)
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Since the relationship
dxj

ds

dxk

ds

is symmetrical in indices j and k, and the rotation Ω i
j̇k̇

is skew-symmetrical in these
indices, the first term in (33) goes to zero. As a result, it follows from (33) that

gim(gjsΩ
. . s
mk + gksΩ

. . s
mj ) = 0, (34)

or
(gjsΩ

. . s
mk + gksΩ

. . s
mj ) = 0, (35)

hence
Ωmkj = −Ωmjk. (36)

Since Ωmkj is skew-symmetric in indices m and k, then it follows from (36) that in
inertial reference frames the torsion of a space of absolute parallelism is skew-symmetrical
in all the three indices.

Substituting (35) into (32) gives

Tijk = −Tjik = −Tikg = −Ωijk. (37)

Therefore, in inertial frames the equation (8) becomes simpler in form:

∇iΩ
. . i
jm = 0, (38)

The energy-momentum tensor (5) is symmetrical in the indices j and m to yield

Tjm =
1

ν
(Ω . . i

smΩ . . s
ji − 1

2
gjmΩ . ji

s Ω . . s
ji ). (39)

We can define the auxilliary pseudovector hm as follows

Ωijk = εijkmhm, Ωijk = εijkmhm (40)

where εijkn is fully skew-symmetrical Levi-Civita symbol and write the tensor (39) as

Tjm =
1

2ν
(hjhm −

1

2
gjmhihi). (41)

Substituting (40) into (38) gives

hm,j − hj,m = 0. (42)

These equations have two solutions: hm = 0 (a trivial one), and

hm = Ψ,m, (43)

where Ψ is pseudoscalar.
Writing the energy-momentum tensor (41) through this pseudoscalar, we have

Tjm =
1

2ν
(Ψ,jΨ,m −

1

2
gjmΨ,iΨ,i). (44)
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In quantum field theory the tensor (44) is the energy-momentum tensor of a massless
pseudoscalar field, where the pseudoscalar Ψ plays the role of the wave function in quantum
equations of motion.

If the pseudovector hm is time-like, it can conveniently be represented as

hm = Ψ,m = ϕ(xi)um, (45)

where
umum = 1 (46)

and ϕ(xi) is a scalar quantity.
Substitution of (45) into the tensor (41) yields the energy-momentum tensor of the form

Tjm =
1

ν
ϕ2(ujum −

1

2
gjm). (47)

The tensor (47) in its structure looks rather like the energy-momentum tensor of an
ideal liquid.

Let us show that matter described in inertial reference frames by energy-momentum
tensors of the form (47) is relative, i.e., it obeys the principle of universal relativity.

Defining the density of matter as

ρ = T/c2, (48)

where
T = gjmTjm, (49)

we find from (37), (39) and (41)

ρ = T/c2 = − 1

2νc2
hjhj = − 1

νc2
Ω.ji

s Ω . . s
ji = − 1

νc2
T ji

s T s
ji . (50)

Suppose now that the density (50) describes the mass of a vacuum purely field particle
with the energy-momentum tensor (39), then the mass can be written as

m0 =
∫

ρ(−g)1/2dV, (51)

where
g = det gjm, dV = dx1dx2dx3,

and the density ρ is given by (50).
Density (50), and hence the mass (51), behave as absolute magnitudes relative to coor-

dinate transformations xi, since the inertial field Tijk is a tensor relative to these transfor-
mations. Using the tetrad ea

i we can pass over from the base indices i, j, k... to the fiber
indices a, b, c.... For example,

T a
bk = ea

iT
i
jke

j
b.

Using this property and the orthogonality conditions ei
ae

a
k = δi

k, we can write the
density (50) in the form

ρ = − 1

νc2
T a

bkT
b k
a . (52)
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Applying now transformations defined on the rotation group O(3.1) to T a
bk we can turn

these quantities to zero. Consequently, the density (52), and hence the mass (51), are
relative in nature, as follows from the principle of universal relativity.

The relativity of mass has been found experimentally in the theory of physical vacuum
proposed by Dirac who created quantum electrodynamics. In quantum electrodynamics, ex-
periments on the production of electron-positron pairs from vacuum when vacuum absorbed
γ-quanta with energy E ≥ 2moc

2, where mo is the electron rest mass, have shown that the
rest mass mo is a relative quantity. Till the pair production, the rest mass of the system
was zero, since there existed only γ-quanta with zero rest mass. After the production we
have an electron and a positron, both with a non-zero rest mass m0, so that in the system
we now have a rest mass 2m0.

4 Field model of a point particle

Let us examine the solution of the vacuum set of the Einstein-Yang-Mills equations
(A), (B.1) and (B.2), which describes the spherically symmetrical formation produced from
vacuum. This enables us to establish the correspondence of the equations of physical
vacuum to the fundamental equations of field theory, which yield a point, spherically sym-
metrical model of a particle. Indeed, the only model of a particle that follows from the
fundamental equations of modern field theory is the model of a point particle with the
matter density proportional to the Dirac δ-function

ρ ∼ δ(r). (53)

Static solutions of field equations in Newton’s gravitation theory and the Maxwell-
Lorentz electrodynamics with a point source on their right-hand side yield the Coulomb-
Newton interaction potential

ϕ ∼ α

r
. (54)

We will consider the spherically symmetrical solution of the vacuum equations (A) and
(B), which describe the vacuum excitation with a variable Coulomb-Newton potential and
for which the Energy-momentum tensor (5) is different from zero. This solution has the
following characteristics [1]:

Solution with a variable Coulomb-Newton potential

(55)

1. Coordinates x0 = u, x1 = r, x2 = θ, x3 = ϕ.
2. Components of the Newman-Penrose symbols

σi
00̇ = (0, 1, 0, 0), σi

11̇ = (1, U, 0, 0), σi
01̇ = ρ(0, 0, P, iP ),

σ00̇
i = (1, 0, 0, 0), σ11̇

i = (−U, 1, 0, 0), σ01̇
i = − 1

2ρP
(0, 0, 1, i)
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U(u) = −1/2 + Ψ0(u)/r, P = (2)−1/2(1 + ζζ/4), ζ = x2 + ix3,

Ψ0 = Ψ0(u).

3. Spinor components of the torsion field

ρ = −1/r, α = −β = −α0/r, γ = Ψ0(u)/2r2,

µ = −1/2r + Ψ0(u)/r2, α0 = ζ/4.

4. Spinor components of the Riemann tensor

Ψ2 = Ψ = −Ψ0(u)/r3, Φ22 = Φ = −Ψ̇0(u)/r2 = −∂Ψ0

∂u

1

r2
.

The Riemann metric of the solution (55) in (quasi) spherical coordinates has the form

ds2 =

(
1− 2Ψ0(t)

r

)
c2dt2 −

(
1− 2Ψ0(t)

r

)−1

dr2 −

−r2(dθ2 + sin2 θdϕ2). (56)

Using the solution (55), we can determine the explicit form of the energy-momentum
tensor (6). Calculations will show that the tensor is

Tjm = ρc2ljlm, (57)

where ρ is the matter density of a vacuum excitation given by

ρ = −2Ψ̇o(u)

νc2r2
, Ψ̇o(u) < 0 ; (58)

lmlm = 0 is the light like vector, which is the spinor basis of the solution (55).
We now consider the limiting process Ψo(u) → Ψo = const of the matter density in the

solution (55). We introduce the auxiliary parameter ξ with the dimensionality of length

ξ =
π|Ψ̇o|r2

2Ψo
. (59)

Through the parameter ξ the density module (58) can be represented as

ρ = ρ+ =
8πΨo

νc2

1

2πr2

ξ

r2
=

8πΨo

νc2

1

2πr2

ξ

(r2 + ξ2)

(
1 +

ξ2

r2

)
, (60)

where the + sign implies that the density ρ+ defines right-hand matter with a positive
density and positive mass. Taking the limit in (60) for ξ → 0, i.e., for Ψo(u) → Ψo = const,
and using the well-known formula

1

2πr2

1

π
lim
x→0

(
x

x2 + r2

)
=

1

2πr2
δ(r) = δ(r),
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where δ(r) is the three-dimensional Dirac function, we will get

ρ+ =
8πΨo

νc2

1

2πr2
δ(r) =

8πΨo

νc2
δ(r). (61)

It is seen from this relationship that when a vacuum excitation becomes stationary
the matter density distributed over space coincides with the matter density for a point
particle (Dirac’s δ-function describes the distribution of a point source).

The result obtained substantiates Einstein’s assumption that in a purely field theory a
point particle must appear as a limiting case and not be introduced into the theory in an
artificial manner, since: ”... a combination of the idea of a continuous field with concepts of
material points located discretely in space turns out to be contradictory. A consistent field
theory requires that all the elements be continuous not only in time but also in space, and
at all its points at that. Consequently, the material point is out of place in field theory [2].”

The fact that a material point appears in a purely field theory as a limiting stationary
case is one of the most important results of the theory of physical vacuum.

5 Real point massive particles produced from vacuum

We will now consider the correspondence of the equations of physical vacuum (A) and
(B) to those fundamental equations of modern physics in which particles are point and
stable particles. If we take into account the above results, the equation (B.1) in the set (??)
for a point stationary source can be written as

Rjm −
1

2
gjmR = νTjm, (62)

where

Tjm =
8πΨ0

νc2
δ(r)ljlm. (63)

Now we compare equations (62) with Einstein’s equations describing a point source. We
note that these equations coincide when in the relationship (63) before the δ-function stands
the mass of the point source, i.e.,

M =
8πΨ0

νc2
. (64)

On the other hand, as the source goes stationary, the metric (56) becomes the Schwarzshield
metric (i.e., the solution of Einstein’s equations for a point source) provided that

Ψ0 =
MG

c2
. (65)

Substituting (65) into the equality (64), we will obtain the value of initially arbitrary
factor ν in the vacuum equations (62)

ν =
8πG

c4
. (66)
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In that case the equations (62) completely coincide with Einstein’s equations that describe
the gravitational field of a point source with constant mass. Accordingly, the metric (56)
becomes the Schwarzshield metric

ds2 = (1− 2MG

rc2
)c2dt2 − (1− 2MG

rc2
)−1dr2 −

−r2(dθ2 + sin2 θdϕ2). (67)

The equations of motion for a test particle in the theory of physical vacuum coincide
with the equations of geodesics of the space of absolute parallelism

d2xi

ds2
+ Γi

jk

dxj

ds

dxk

ds
+ T i

jk

dxj

ds

dxk

ds
= 0. (68)

To clarify the correspondence of the equations of physical vacuum and Einstein’s theory
we will use the equations (68). These equations coincide with the equations of motion in
Einstein’s gravitation theory on the condition that

F i
I = mT i

jk

dxj

ds

dxk

ds
= 0,

i.e., if the inertia forces are zero. This means that the equations of motion in Einstein’s
theory

d2xi

ds2
+ Γi

jk

dxj

ds

dxk

ds
= 0 (69)

are written either in inertial or locally inertial reference frames.
To show this we will write for simplicity the solution (55) with a constant source func-

tion Ψ0 = MG/c2 = const in conventional quasi-Cartesian coordinates. In these coordinates
the tetrad ea

i becomes

e
(0)

0 = (1 +
2ϕ

c2
)1/2, e

(1)
1 = e

(2)
2 = e

(3)
3 = (1− 2ϕ

c2
)1/2, (70)

where in parentheses we have the tetrad indices and ϕ = −MG/r.
The Riemannian metric for the tetrad (70) can be derived using the relationships

gik = ηabe
a

ie
b

k, ηab = ηab = diag(1− 1− 1− 1).

It can be written as

ds2 = (1− 2MG

rc2
)c2dt2 − (1 +

2MG

rc2
)(dx2 + dy2 + dz2). (71)

If now we consider the nonrelativistic approximation and take gravitational fields to be
weak, i.e., assume that

2ϕ

c2
� 1, gik ' ηik, ds ' ds0 = cdt(1− v2

c2
)1/2, (72)

Ri
jkm '

o

R
i
jkm = 0,

v2

c2
� 1, ds ' ds0 ' cdt,
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we will derive from (69) the following equations of motion of a mass m

m
d2xα

dt2
= −mc2Γα

00 = m
MG

r3
xα. (73)

It is easily seen that the equations derived are the equations of motion of the Newtonian
theory of gravitation, which are known to be written in inertial reference frames. Note that
in passing from Einstein’s equations of motion (69) to the Newtonian equations of motion
(73) we have never used transformations of the coordinates xi. Therefore, transitions
from accelerated reference frames to inertial ones are absolutely out of the question. This
suggests that both (73) and (69) are written for inertial reference frames, although they
allow coordinate transformations that correspond to a transition to a locally inertial reference
frame. In transition to an accelerated locally Lorentzian reference frame the equations (69)
take the form d2x/ds2 = 0. These are the equations of free motion.

A consistent description of the transition to a locally Lorentzian reference frame is only
possible using the equations (68). Indeed, in passing to an accelerated reference frame in
Newton’s equations (73) an inertia force should appear. It is this situation that is described
by the equations (68). For the conditions (72) the equations of motion (68) for a mass will
be written as

m
d2xα

dt2
= m

MG

r3
xα −m

MG

r3
xα = 0. (74)

Here Fα
I = −mc2Tα

00 = −mMGxα/r3 is the inertia force that compensates for the lo-
cally gravitational force Fα

G = mMGxα/r3. It is owing to this compensation that a local
weightlessness condition in an accelerated locally Lorentzian frame is produced.

To conclude, we can say that the equations of physical vacuum describe stable point
gravitating particles produced from vacuum and satisfying the equations in Einstein’s theory
of gravitation provided that:

6 λ-term and dark energy

When spherically symmetrical massive matter becomes stationary, the field equations
(B.1) and the energy-momentum tensor (47) in an inertial reference frame become

Rjm −
1

2
gjmR =

8πG

4
Tjm, (75)

where
Tjm = −Mc2δ(r)(ujum −

1

2
gjm). (76)

Equations (75) with the matter tensor (76) can be rewritten as

Rjm −
1

2
gjmR + λgjm = −8πG

c4
T

(d)
jm , (77)

where
T

(d)
jm = Mc2δ(r)ujum (78)
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is the ”dust” tensor and

λ = −4πGM

c2
δ(r) (79)

is sam kind of λ-term.
Equations (77) are interesting in that they enable a ”point” particle to be modeled as a

microscopic black hole and the approximate solutions of the vacuum equations to be sought
within the framework of Einstein’s theory beyond the source (when 2MG/rc2 � 1), near
the horizon of the black hole (when 2MG/rc2 ≈ 1) and inside the source (2MG/rc2 > 1).
Corresponding to these three cases are the following equations:

Rjm = 0, 2MG/rc2 � 1, (80)

Rjm −
1

2
gjmR = −8πG

c4
T

(d)
jm , 2MG/rc2 ≈ 1, (81)

Rjm −
1

2
gjmR + λgjm = −8πG

c4
T

(d)
jm , 2MG/rc2 > 1. (82)

Equations (81), which in Einstein’s theory are fundamental and describing a point source,
in the theory of physical vacuum are approximate equations that are valid near the horizon.
Exact correspondence of the equations of physical vacuum to the field equations in Einstein’s
theory of gravitation only holds for the vacuum equations (80).

Considering that gjmgjm = 4, we can rewrite the tensor (47) as

Tjm =
1

ν
ϕ2(xi)(

1

4
gjmgjmujum −

1

2
gjm) = (83)

=
1

ν
ϕ2(xi)(

1

4
gjm −

1

2
gjm) = − 1

4ν
ϕ2(xi)gjm,

or
Tjm = λ(xi)gjm, (84)

where

λ(xi) = − 1

4ν
ϕ2(xi) =

ρc2

4
.

In this case λ-term is generated by a scalar field ϕ which has torsional nature and also is a
source of a ”dark matter”.
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