ЗОЛОТАЯ ПРОПОРЦИЯ В АРБЕЛОСЕ. Часть 2

Второе золотое сечение в арбелосе

Продолжаем новое изложение золотой пропорции в арбелосе общего вида, с выработкой единой концептуальной линии и последовательно-доказательного анализа.

Заметим, что деление статьи на отдельные связанные части — это не блажь. Разбиение на структурные единицы способствует улучшению построения и систематизации текста, помогает расставить приоритеты и точнее выстроить смысловую логику в каждой части.

В некотором смысле они независимы, в целом же тесно взаимосвязаны.

Напомним основные обозначения и вспомогательные параметры:

O(A) — окружность (дуга) с центром в точке O, проходящая через точку A, при этом допускается перечисление в скобках других возможных точек, OA — радиус окружности;

P(AB, CD, ...) — точка на пересечении прямых AB, CD и возможно других фигур, указанных в скобках, включая иные прямые и окружности; скобки могут быть опущены;

S=gig(ABig) — операнд деления прямолинейного отрезка AB точкой S в золотом (gold)

отношении $\frac{AS}{SB} = \Phi$, в том числе внешним образом, где $\Phi = \phi^{-1} = \frac{1+\sqrt{5}}{2}$ — константа золотого сечения (3C).

На диаметре AB полуокружности $\widehat{O}(A)$ выберем произвольную точку C, и на отрезках AC = b, CB = a, как на диаметрах, проведем полуокружности $\widehat{O}_1(A)$, $\widehat{O}_2(B)$. Три

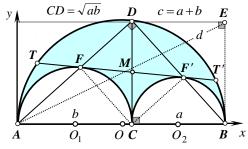


Рис. 1. Геометрическая фигура арбелоса $Ar = Ar(\hat{O}, \hat{O}_1, \hat{O}_2)$

полуокружности образуют геометрическую фигуру – арбелос (рис. 1).

Из точки C восстановим перпендикуляр $CD \perp AB$.

Через точки $F(AD, \hat{O}_1)$, $F'(BD, \hat{O}_2)$ проведем прямую, которая пересекает окружность \hat{O} в точках T, T' и отрезок CD в точке M.

Арбелос вместе с основными линиями будем обозначать $Ar = Ar(\hat{O}, \hat{O}_1, \hat{O}_2)$, где литера r (radius) одновременно символизирует наличие в фигуре

окружностей, литера A — Архимеда, который положил начало изучению данной фигуры.

По построению CFDF' — прямоугольник, точка M (middle) делит его диагонали пополам;

 $k=\sqrt{ab}\,/c$ — угловой коэффициент (тангенс угла наклона) диагонали AE прямоугольника размером $AB\! imes\!CD$.

Второе золотое сечение в арбелосе

 $\underline{Teopema~2}$. На диаметре \widehat{O} арбелоса $Ar(\widehat{O},\widehat{O}_1,\widehat{O}_2)$ построен равнобедренный треугольник Δ ABL высотой $2 \cdot CD$, через точки V_1 (AL, \widehat{O}_1), V_2 (BL, \widehat{O}_2) проведены две окружности $\widehat{A}(V_1)$, $\widehat{B}(V_2)$, а к ним общие касательные t(x), -t(x), которые пересекают линию CD в точках K, G соответственно (рис. 2). Тогда G = g(KD).

Доказательство. По построению $L = c/2 + i \cdot 2\sqrt{ab}$.

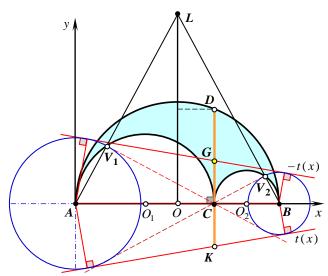


Рис. 2. Второе золотое сечение в арбелосе: G = g(KD)

Прямая
$$AL(x) = \frac{2\sqrt{ab}}{c/2}x = 4kx$$
.

Определим координаты (x, y) точки V_1 при пересечении прямой AL(x) и \widehat{O}_1 -полуокружности $x^2 + y^2 = bx$:

$$(4kx)^2 = bx - x^2$$
, $x = b \cdot \xi$, $\xi = \frac{1}{1 + 16k^2}$;

$$V_1 = b\xi(1+i\cdot 4k).$$

Соответственно $V_2 = c - a\xi(1 - i \cdot 4k)$. Радиусы окружностей:

$$R = b\sqrt{\xi}$$
, $r = a\sqrt{\xi}$.

С учетом равенства $c^2 - (b-a)^2 = 4k^2c$ уравнение касательной

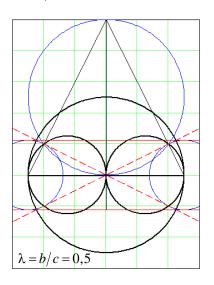
$$t(x) = \frac{(R-r)x - cR}{\sqrt{c^2 - (R-r)^2}} = \frac{(b-a)x - bc}{2kc\sqrt{5}}.$$

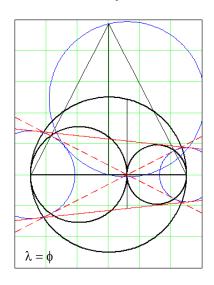
Значения касательных при x = b равны $\pm t(b) = \mp \sqrt{ab/5}$.

То есть $CK = CG = CD/\sqrt{5}$, $KD = CD(1+1/\sqrt{5})$, откуда следует G = g(KD). Теорема доказана.

Две другие касательные проходят через точку C ортогонально боковым сторонам треугольника $\Delta \ ABL$. Но для золотой пропорции этот замечательный факт не пригодился.

На рисунке 3 приведены результаты компьютерной графики для некоторых отношений $\lambda = b/c$ между диаметрами полуокружностей \hat{O}_1, \hat{O} .





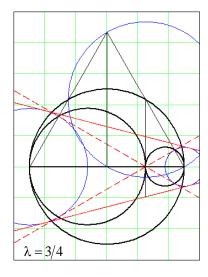


Рис. 3. Примеры построения второго золотого сечения в арбелосах различных λ

Создается впечатление, что в золотом арбелосе окружности $\widehat{A}(V_1)$ и $\widehat{D}(O)$ касаются.

Хорошо бы, для гармоничности общей картины. Но нужно проверить.

Без потери общности положим c = 1, тогда $b = \phi$, $a = \phi^2$.

Прямая, $AD(x) = \sqrt{ab} \, / \, b \cdot x = \sqrt{\phi} x$ соединяет центры этих окружностей и пересекает их в точках:

$$\widehat{A}(V_1): x^2 + (\sqrt{\phi}x)^2 = (\phi\sqrt{\xi})^2 \rightarrow x_A = \sqrt{\frac{\phi^3}{1 + 16\phi^3}} \approx 0,22230;$$

$$\widehat{D}(O): (x-\phi)^2 + (\sqrt{\phi}x - \phi\sqrt{\phi})^2 = (1/2)^2 \rightarrow x_D = \phi - \sqrt{\phi}/2 \approx 0,22496 > x_A.$$

То есть между окружностями присутствует зазор. Малозаметный, но всё-таки есть.

Можно найти условия точного касания, но это уже не столь интересно.

Таким образом, золотой арбелос не имеет особых преференций в рассмотренной задаче, разве что отношение радиусов равно $R/r = \phi$.

На рисунке 3 (справа) $\lambda = 3/4$, $b/a = 3 \rightarrow r = a/2$, R = b/2.

Третье золотое сечение в арбелосе

Золотая пропорция относится к золотому отношению на продолжении отрезка СД.

 $\underline{Teopema~3}$. В арбелосе $Ar(\hat{O},\hat{O}_1,\hat{O}_2)$ восстановлены два перпендикуляра: серединный к CD, пересекающий \hat{O} в точках Q и Q', а также $DP \perp DT'$ с точкой P(DP,QQ'), из которой проведена окружность $\hat{P}(T')$, пересекающая линию CD в точках E и K (рис. 4). Тогда D=g(CE), C=g(DK).



Рис. 4. Третье золотое сечение в арбелосе: D = g(CE), C = g(DK)

Обозначим: z = PM, r = PD, R = PT' = PE.

Известно [1], что $DT = DC = DT' = \sqrt{ab}$.

По теореме Пифагора находим:

$$r^2 = (DM)^2 + z^2 = ab/4 + z^2$$
;

$$(PT')^2 = r^2 + (DT')^2 = ab/4 + z^2 + ab = 5ab/4 + z^2;$$

$$(EM)^2 = R^2 - z^2 = 5ab/4;$$

$$EC = EM + MC = \sqrt{5ab}/2 + \sqrt{ab}/2 =$$
$$= \sqrt{ab} (\sqrt{5} + 1)/2 = CD \cdot \Phi.$$

По построению CK = ED, значит, $KD = CD \cdot \Phi$.

Аналогичные выводы следуют для построения $DP' \perp DT$ с точкой $P' \big(DP', QQ' \big)$, из которой

проведена окружность $\widehat{P}'(T)$. Теорема доказана.

Анализ результатов

Теорема 3 непосредственно вытекает из обобщенной модели золотого роста [2], только для частного случая в привязке к параметрам арбелоса.

Никаких дополнительных априорных условий относительно точек P, P', как это делается в работе [3], не требуется. Золотое отношение определено и доказано.

А вот далее можно продолжать анализ.

В частности, точки P и P' имеют замечательное свойство.

Помимо центров окружностей, воспроизводящих золотые отношения, они являются также центрами описанных окружностей треугольников $\triangle CDQ$ и $\triangle CDQ'$.

Из доказательства теоремы 3 это не следует. Мы гладко прошли последовательность параметров z, r, R, но не получили ни одной зависимости для их аналитического определения. Только парные связи. Поэтому нужны дополнительные зацепки.

Треугольник Δ *CDQ* равнобедренный по построению, а точка *D* является центром описанной окружности Δ *CTT* ', поэтому имеют место равенства углов:

$$\angle CDT' = 2 \cdot \angle CTT' = 2 \cdot \angle CQM = \angle CQD$$
.

Кроме того, равны углы $\angle DPP' = \angle CDT' - c$ перпендикулярными сторонами.

Отсюда следует: PQ = PD = r – радиус описанной окружности $\triangle CDQ$.

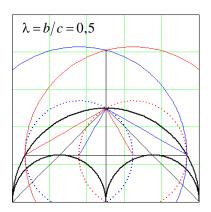
Красивая закономерность.

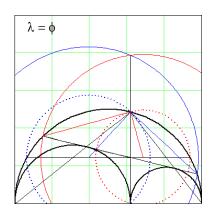
Ордината точки Q равна $CD/2 = \sqrt{ab}/2$. Абсцисса определяется из уравнения окружности \widehat{O} : $x^2+y^2=cx$, то есть $x^2+ab/4=cx$, откуда $x=\frac{c-\sqrt{c^2-ab}}{2}$.

Тогда высота треугольника h=QM=b-x , радиус $r=\frac{h^2+ab}{2h}$ и остальные параметры $z=\sqrt{r^2-ab/4}$, $R=\sqrt{r^2+ab}$.

Дополнительно отметим, что равнобедренные треугольники подобны $\Delta \, DCT' \sim \Delta \, DCQ$ с равными углами при вершине, откуда следует пропорция $\frac{CT'}{DC} = \frac{DC}{CO}$.

То есть DC — "дважды" среднегеометрическое $CD = \sqrt{CA \cdot CB} = \sqrt{CQ \cdot CT'}$. — Отлично! На рисунке 5 приведены результаты компьютерной графики для некоторых отношений $\lambda = b/c$ между диаметрами полуокружностей \hat{O}_1 , \hat{O} .





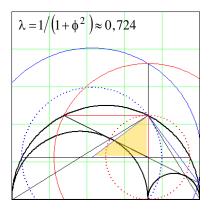


Рис. 5. Примеры построения третьего золотого сечения в арбелосах различных λ: цветом выделен египетский треугольник

Золотой арбелос $\lambda = b/c = \phi$ особенным образом здесь не отличается.

Зато примечателен другой золотоносный случай $\lambda = \frac{\Phi}{\sqrt{5}} = \frac{1}{1+\phi^2} \approx 0,724$ или

 $\delta = a/b = \phi^2$ с такими характерными свойствами:

- $TD \parallel AB$, $DP' \perp AB$, $P' \equiv M$;
- $\frac{R'}{r'} = \sqrt{5}$, $\frac{\sqrt{ab}}{r} = \frac{6}{5}$, $\frac{\sqrt{ab}}{r'} = 2$;
- ΔDPM египетский прямоугольный треугольник с соотношением сторон 3:4:5;
- прямоугольник размером $AB \times CD$ линией CD делится на два золотых прямоугольника с соотношением сторон $\frac{\sqrt{ab}}{a} = \Phi$ и $\frac{\sqrt{ab}}{b} = \phi$.

Заключение

Итак, три теоремы, три разных золотых сечения в арбелосе общего вида.

Сложность доказательств, на наш взгляд, сведена до минимума.

Доверие к моделям высокое. Так или иначе, арбелосова копилка пополняется новыми знаниями. В том числе золотой пробы.

В первом 3C особо отличился золотой арбелос ($c/b = b/a = \Phi$) с присущей красивой графикой, благодаря золотым пропорциям, которые внесят в геометрический объект свою неповторимую гармонию.

Довольно неожиданно, но презентабельно проявил себя другой золотоносный частный случай $\delta = a/b = \phi^2$, – в первом и третьем 3C.

К нему следует присмотреться. Полагаем, это далеко не полный перечень его, несомненно, полезных свойств.

Присоединяйтесь. Творческая лаборатория открыта... – Окей.

Литература:

- 1. Василенко С.Л., Ковалев А.Н. Золотые пропорции в арбелосе. Часть 1 // АТ. М.: Эл. № 77-6567, публ. 28420, 07.04.2023. https://www.trinitas.ru/rus/doc/0016/001h/00165291.htm.
- 2. Василенко С.Л. Деление пополам и золотая пропорция. Часть 12. Обобщенная модель золотого роста // АТ. М.: Эл. № 77-6567, публ. 28412, 01.04.2023. https://www.trinitas.ru/rus/doc/0016/001h/00165283.htm.
- 3. Nguyen Ngoc Giang, Le Viet An. Golden sections and Archimedean circles in an Arbelos // International J. of geometry. 2018, **7**(2), 25-36. https://ijgeometry.com/wp-content/uploads/2018/10/25-36.pdf.

© ВаСиЛенко, 2023 Украина, Харьков